A squid dynein isoform promotes axoplasmic vesicle translocation.

Author:

Gilbert S P1,Sloboda R D1

Affiliation:

1. Department of Molecular and Cell Biology, Pennsylvania State University, University Park 16802.

Abstract

Axoplasmic vesicles that translocate on isolated microtubules in an ATP-dependent manner have an associated ATP-binding polypeptide with a previously estimated relative molecular mass of 292 kD (Gilbert, S. P., and R. D. Sloboda. 1986. J. Cell Biol. 103:947-956). Here, data are presented showing that this polypeptide (designated H1) and another high molecular mass polypeptide (H2) can be isolated in association with axoplasmic vesicles or optic lobe microtubules. The H1 and H2 polypeptides dissociate from microtubules in the presence of MgATP and can be further purified by gel filtration chromatography. The peak fraction thus obtained demonstrates MgATPase activity and promotes the translocation of salt-extracted vesicles (mean = 0.87 microns/s) and latex beads (mean = 0.92 microns/s) along isolated microtubules. The H1 polypeptide binds [alpha 32P]8-azidoATP and is thermosoluble, but the H2 polypeptide does not share these characteristics. In immunofluorescence experiments with dissociated squid axoplasm, affinity-purified H1 antibodies yield a punctate pattern that corresponds to vesicle-like particles, and these antibodies inhibit the bidirectional movement of axoplasmic vesicles. H2 is cleaved by UV irradiation in the presence of MgATP and vanadate to yield vanadate-induced peptides of 240 and 195 kD, yet H1 does not cleave under identical conditions. These experiments also demonstrate that the actual relative molecular mass of the H1 and H2 polypeptides is approximately 435 kD. On sucrose density gradients, H1 and H2 sediment at 19-20 S, and negatively stained samples reveal particles comprised of two globular heads with stems that contact each other and extend to a common base. The results demonstrate that the complex purified is a vesicle-associated ATPase whose characteristics indicate that it is a squid isoform of dynein. Furthermore, the data suggest that this vesicle-associated dynein promotes membranous organelle motility during fast axoplasmic transport.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3