Author:
Fujikawa L S,Foster C S,Gipson I K,Colvin R B
Abstract
The nature of the substrate that supports epithelial migration in vivo is of interest, particularly with respect to mechanisms of wound healing. Immunofluorescence and electron microscopy were used to search for common substrate components in prototype rabbit corneal wounds: epithelial scrape wounds, in which the corneal or conjunctival epithelium migrated over the denuded lamina densa of the corneal basement membrane (CBM), and superficial keratectomy, in which the corneal epithelium migrated over a bare stroma without CBM. The corneal epithelium moved rapidly over the CBM or stroma to cover the defect within 2-3 d, whereas the conjunctival epithelium required 1-2 wk. In all wounds, fibronectin and fibrin/fibrinogen were deposited onto the bare surface within 8 h after wounding and persisted under the migrating epithelium until migration was complete. Bullous pemphigoid antigen (BPA), a normal component of the CBM, was removed with the epithelium upon scrape wounding and reappeared in the CBM after migration was completed. In contrast, the conjunctival epithelium had a continuous subepithelial band of BPA out to the migrating tip. Laminin, also a normal component of the CBM, was not removed in the scrape wounds, indicating that the region of least resistance to shear stress was between the BPA and laminin layers. Laminin was removed by superficial keratectomy and was not detectable under the leading edge of the migrating cells. Laminin and BPA were restored in the CBM by 2-4 wk. Type IV collagen could not be detected in normal CBM, but was conspicuously present in conjunctival basement membrane and in blood vessels. Focal bands of type IV collagen did appear in the newly synthesized CBM 2-4 wk after keratectomy. These results argue that BPA, laminin, and type IV collagen are not essential for the migration of corneal epithelium during wound healing and support the hypothesis that fibronectin and fibrin/fibrinogen are the common, perhaps the essential, components of the provisional matrix that serves as a substrate until the permanent attachment components are regenerated.
Publisher
Rockefeller University Press
Cited by
165 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献