Physiological regulation of β-catenin stability by Tcf3 and CK1ϵ

Author:

Lee Ethan1,Salic Adrian1,Kirschner Marc W.1

Affiliation:

1. Department of Cell Biology, Harvard Medical School, Boston, MA 02115

Abstract

The wnt pathway regulates the steady state level of β-catenin, a transcriptional coactivator for the Tcf3/Lef1 family of DNA binding proteins. We demonstrate that Tcf3 can inhibit β-catenin turnover via its competition with axin and adenomatous polyposis for β-catenin binding. A mutant of β-catenin that cannot bind Tcf3 is degraded faster than the wild-type protein in Xenopus embryos and extracts. A fragment of β-catenin and a peptide encoding the NH2 terminus of Tcf4 that block the interaction between β-catenin and Tcf3 stimulate β-catenin degradation, indicating this interaction normally plays an important role in regulating β-catenin turnover. Tcf3 is a substrate for both glycogen synthase kinase (GSK) 3 and casein kinase (CK) 1ϵ, and phosphorylation of Tcf3 by CKIϵ stimulates its binding to β-catenin, an effect reversed by GSK3. Tcf3 synergizes with CK1ϵ to inhibit β-catenin degradation, whereas CKI-7, an inhibitor of CK1ϵ, reduces the inhibitory effect of Tcf3. Finally, we provide evidence that CK1ϵ stimulates the binding of dishevelled (dsh) to GSk3 binding protein (GBP) in extracts. Along with evidence that a significant amount of Tcf protein is nonnuclear, these findings suggest that CK1ϵ can modulate wnt signaling in vivo by regulating both the β-catenin-Tcf3 and the GBP-dsh interfaces.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3