Activation of retinoblastoma protein in mammary gland leads to ductal growth suppression, precocious differentiation, and adenocarcinoma

Author:

Jiang Zhe1,Zacksenhaus Eldad1

Affiliation:

1. Department of Medicine, Department of Laboratory Medicine and Pathobiology, and Department of Medical Biophysics, University of Toronto, Division of Cell and Molecular Biology, Toronto General Research Institute-University Health Network, Toronto, Ontario, Canada M5G 2M1

Abstract

The retinoblastoma (Rb) tumor suppressor controls cellular proliferation, survival, and differentiation and is functionally inactivated by mutations or hyperphosphorylation in most human cancers. Although activation of endogenous Rb is thought to provide an effective approach to suppress cell proliferation, long-term inhibition of apoptosis by active Rb may have detrimental consequences in vivo. To directly test these paradigms, we targeted phosphorylation-resistant constitutively active Rb alleles, RbΔKs, to the mouse mammary gland. Pubescent transgenic females displayed reduced ductal elongation and cell proliferation at the endbuds. Postpuberty transgenic mice exhibited precocious cellular differentiation and β-casein expression and extended survival of the mammary epithelium with a moderate but specific effect on the expression of E2F1, IGF1Rα, and phospho–protein kinase B/AKT. Remarkably, ∼30% RbΔK transgenic females developed focal hyperplastic nodules, and ∼7% exhibited full-blown mammary adenocarcinomas within 15 mo. Expression of the RbΔK transgene in these mammary tumors was reduced greatly. Our results suggest that transient activation of Rb induces cancer by extending cell survival and that the dual effects of Rb on cell proliferation and apoptosis impose an inherent caveat to the use of the Rb pathway for long-term cancer therapy.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 54 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3