The neurotrophin receptor, gp75, forms a complex with the receptor tyrosine kinase TrkA.

Author:

Ross A H1,Daou M C1,McKinnon C A1,Condon P J1,Lachyankar M B1,Stephens R M1,Kaplan D R1,Wolf D E1

Affiliation:

1. The Worcester Foundation for Biomedical Research, Shrewsbury, Massachusetts, 01545, USA.

Abstract

The high-affinity NGF receptor is thought to be a complex of two receptors , gp75 and the tyrosine kinase TrkA, but direct biochemical evidence for such an association had been lacking. In this report, we demonstrate the existence of such a gp75-TrkA complex by a copatching technique. Gp75 on the surface of intact cells is patched with an anti-gp75 antibody and fluorescent secondary antibody, the cells are then fixed to prevent further antibody-induced redistributions, and the distribution of TrkA is probed with and anti-TrkA antibody and fluorescent secondary antibody. We utilize a baculovirus-insect cell expression of wild-type and mutated NGF receptors. TrkA and gp75 copatch in both the absence and presence of NGF. The association is specific, since gp75 does not copatch with other tyrosine kinase receptors, including TrkB, platelet-derived growth factor receptor-beta, and Torso (Tor). To determine which domains of TrkA are required for copatching, we used a series of TrkA-Tor chimeric receptors and show that the extracellular domain of TrkA is sufficient for copatching with gp75. A chimeric receptor with TrkA transmembrane and intracellular domains show partial copatching with gp75. Deletion of the intracellular domain of gp75 decreases but does not eliminate copatching. A point mutation which inactivates the TrkA kinase has no effect on copatching, indicating that this enzymatic activity is not required for association with gp75. Hence, although interactions between the gp75 and TrkA extracellular domains are sufficient for complex formation, interactions involving other receptor domains also play a role.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3