Abstract
AbstractThe neurotrophin receptors p75 and TrkA play an important role in the development and survival of the nervous system. Biochemical data suggest that p75 and TrkA regulate the activities of each other. For instance, p75 is able to regulate the response of TrkA to lower concentrations of NGF and TrkA promotes p75 shedding by α-secretases in a ligand-dependent manner. The current model is that p75 and TrkA are regulated by means of a physical direct interaction, however the nature of such interaction has been elusive so far. Here using NMR in micelles, multiscale molecular dynamics (MD), FRET and functional studies we identified and characterized the direct interaction between TrkA and p75 through the transmembrane domains (TMDs). MD of p75-TMD mutants suggests that although the interaction between TrkA and p75 TMDs is maintained, a specific protein interface is required to facilitate TrkA active homodimerization in the presence of NGF. The same mutations in the TMD protein interface of p75 reduced the activation of TrkA by NGF and cell differentiation. In summary we provide a structural model of the p75/TrkA receptor complex stabilized by transmembrane domain interactions.
Publisher
Cold Spring Harbor Laboratory