Supercontracted state of vertebrate smooth muscle cell fragments reveals myofilament lengths.

Author:

Small J V1,Herzog M1,Barth M1,Draeger A1

Affiliation:

1. Institute of Molecular Biology, Austrian Academy of Sciences, Salzburg.

Abstract

Isolated cell preparations from chicken gizzard smooth muscle typically contain a mixture of cell fragments and whole cells. Both species are spontaneously permeable and may be preloaded with externally applied phalloidin and antibodies and then induced to contract with Mg ATP. Labeling with antibodies revealed that the cell fragments specifically lacked certain cytoskeletal proteins (vinculin, filamin) and were depleted to various degrees in others (desmin, alpha-actinin). The cell fragments showed a unique mode of supercontraction that involved the protrusion of actin filaments through the cell surface during the terminal phase of shortening. In the presence of dextran, to minimize protein loss, the supercontracted products were star-like in form, comprising long actin bundles radiating in all directions from a central core containing myosin, desmin, and alpha-actinin. It is concluded that supercontraction is facilitated by an effective uncoupling of the contractile apparatus from the cytoskeleton, due to partial degradation of the latter, which allows unhindered sliding of actin over myosin. Homogenization of the cell fragments before or after supercontraction produced linear bipolar dimer structures composed of two oppositely polarized bundles of actin flanking a central bundle of myosin filaments. Actin filaments were shown to extend the whole length of the bundles and their length averaged integral to 4.5 microns. Myosin filaments in the supercontracted dimers averaged 1.6 microns in length. The results, showing for the first time the high actin to myosin filament length ratio in smooth muscle are readily consistent with the slow speed of shortening of this tissue. Other implications of the results are also discussed.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Filament evanescence of myosin II and smooth muscle function;Journal of General Physiology;2021-02-19

2. Mechanics of Vascular Smooth Muscle;Comprehensive Physiology;2015-12-15

3. Phosphate and ADP Differently Inhibit Coordinated Smooth Muscle Myosin Groups;Biophysical Journal;2015-02

4. Reply from Chun Y. Seow;The Journal of Physiology;2015-01-15

5. Deciphering actin cytoskeletal function in the contractile vascular smooth muscle cell;The Journal of Physiology;2012-08-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3