Filament evanescence of myosin II and smooth muscle function

Author:

Wang Lu12ORCID,Chitano Pasquale32,Seow Chun Y.32ORCID

Affiliation:

1. Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada

2. The Centre for Heart Lung Innovation, University of British Columbia, Vancouver, British Columbia, Canada

3. Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada

Abstract

Smooth muscle is an integral part of hollow organs. Many of them are constantly subjected to mechanical forces that alter organ shape and modify the properties of smooth muscle. To understand the molecular mechanisms underlying smooth muscle function in its dynamic mechanical environment, a new paradigm has emerged that depicts evanescence of myosin filaments as a key mechanism for the muscle’s adaptation to external forces in order to maintain optimal contractility. Unlike the bipolar myosin filaments of striated muscle, the side-polar filaments of smooth muscle appear to be less stable, capable of changing their lengths through polymerization and depolymerization (i.e., evanescence). In this review, we summarize accumulated knowledge on the structure and mechanism of filament formation of myosin II and on the influence of ionic strength, pH, ATP, myosin regulatory light chain phosphorylation, and mechanical perturbation on myosin filament stability. We discuss the scenario of intracellular pools of monomeric and filamentous myosin, length distribution of myosin filaments, and the regulatory mechanisms of filament lability in contraction and relaxation of smooth muscle. Based on recent findings, we suggest that filament evanescence is one of the fundamental mechanisms underlying smooth muscle’s ability to adapt to the external environment and maintain optimal function. Finally, we briefly discuss how increased ROCK protein expression in asthma may lead to altered myosin filament stability, which may explain the lack of deep-inspiration–induced bronchodilation and bronchoprotection in asthma.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Publisher

Rockefeller University Press

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3