The three-dimensional structure of the nemaline rod Z-band.

Author:

Morris E P1,Nneji G1,Squire J M1

Affiliation:

1. Biophysics Section, Blackett Laboratory, Imperial College, London, England.

Abstract

In nemaline myopathy and some cardiac muscles, the Z-band becomes greatly enlarged and contains multiple layers of a zigzag structure similar to that seen in normal muscle. Because of the additional periodicity in the direction of the filament axis, these structures are particularly favorable for three-dimensional analysis since it becomes possible to average the data in all three dimensions and thus improve the reliability of the reconstruction. Individual views of the structure corresponding to tilted longitudinal and transverse sections were combined by matching the phases of common reflections. Examination of the tilted views strongly suggested that to the available resolution, the structure possesses fourfold screw symmetry along the actin filament axes. This symmetry could be used both in establishing the correct alignment for the combination of individual tilted views and to generate additional views not readily accessible in a single tilt series. The reconstruction shows actin filaments from one sarcomere surrounded by an array of four actin filaments with opposite polarity from the adjacent sacormere. The actin filaments show a right-handed twist and are connected by a structure that links adjacent filaments with the same polarity at the same axial level, then runs parallel to the filaments, and finally forms a link between two actin filaments whose polarity is opposite to that of the first pair. The connecting structure is probably composed of alpha-actinin which is located in Z-bands and cross-links actin filaments. The connecting structure may consist of two alpha-actinin molecules linking actin filaments of opposite polarity.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3