PANETH AND GOBLET CELL RENEWAL IN MOUSE DUODENAL CRYPTS

Author:

Troughton W. David1,Trier Jerry S.1

Affiliation:

1. From the Departments of Medicine and Anatomy, University of New Mexico School of Medicine, Albuquerque, New Mexico 87106.

Abstract

Proliferation of Paneth and goblet cells of mouse duodenal crypts was studied by high resolution light microscope radioautography. In one group of mice, blood levels of thymidine-3H were sustained for up to 12 hr by repeated injections of isotope to facilitate identification of proliferating cells. In these animals, many goblet cell nuclei incorporated thymidine-3H whereas only 1 of 6261 tabulated Paneth cells was labeled. Cells intermediate in structure between undifferentiated and goblet cells and between undifferentiated and Paneth cells were identified and their light and electron microscopic features are described. A significant number of these "intermediate" cells incorporated thymidine-3H into their nuclei. Another group of mice received a single injection of thymidine-3H. These animals were killed 4 hr to 29 days after isotope administration. Goblet cells and intermediate cells with labeled nuclei were identified 4 hr after thymidine-3H but could not be seen after 15 days. In contrast, Paneth cells with labeled nuclei were not observed until 24 hr after thymidine-3H but were still present at 29 days, long after labeled undifferentiated, goblet, and intermediate cells had disappeared. We conclude that differentiated Paneth cells in mouse duodenum do not normally proliferate, but, instead, arise by differentiation from undifferentiated crypt cells or from intermediate cells. Moreover, once formed, Paneth cells persist in crypts for a prolonged period. In contrast, intermediate cells and crypt goblet cells proliferate actively and are less stable cell populations than differentiated Paneth cells. The precise function of the intermediate cells is not known, but they may represent transition forms between undifferentiated cells and the more matrure secretory cells. Damage of crypt epithelial cells, thought to be due to radiation effects, was evident in both groups of mice.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 115 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3