Neural differentiation, NCAM-mediated adhesion, and gap junctional communication in neuroectoderm. A study in vitro.

Author:

Keane R W1,Mehta P P1,Rose B1,Honig L S1,Loewenstein W R1,Rutishauser U1

Affiliation:

1. Department of Physiology and Biophysics, University of Miami School of Medicine, Florida 33101.

Abstract

We studied the development of NCAM and gap junctional communication, and their mutual relationship in chick neuroectoderm in vitro. Expression of NCAM, as detected by monoclonal and polyclonal antibodies, and development of junctional communication, as detected by extensive cell-to-cell transfer of 400-500-D fluorescent tracers, occurred in cultures from stage-2 embryos onward. Both expressions presumably required primary induction. The differentiating cells formed discrete fields of expression on the second to third day in culture, with the NCAM fields coinciding with the junctional communication fields delineated by the tracers. Other neural differentiations developed in the following order: tetanus toxin receptors, neurofilament protein, and neurite outgrowth. Chronic treatment with antibody Fab fragments against NCAM interfered with the development of communication, suggesting that NCAM-mediated adhesion promotes formation of cell-to-cell channels. Temperature-sensitive mutant Rous sarcoma virus blocked (reversibly) communication and the subsequent development of neurofilament protein and neurites, but expression of NCAM continued.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3