Ouabain Promotes Gap Junctional Intercellular Communication in Cancer Cells

Author:

Serrano-Rubi Mauricio,Jimenez Lidia,Martinez-Rendon Jacqueline,Cereijido Marcelino,Ponce Arturo

Abstract

Gap junctions are molecular structures that allow communication between neighboring cells. It has been shown that gap junctional intercellular communication (GJIC) is notoriously reduced in cancer cells compared to their normal counterparts. Ouabain, a plant derived substance, widely known for its therapeutic properties on the heart, has been shown to play a role in several types of cancer, although its mechanism of action is not yet fully understood. Since we have previously shown that ouabain enhances GJIC in epithelial cells (MDCK), here we probed whether ouabain affects GJIC in a variety of cancer cell lines, including cervico-uterine (CasKi, SiHa and Hela), breast (MDA-MB-321 and MCF7), lung (A549), colon (SW480) and pancreas (HPAF-II). For this purpose, we conducted dye transfer assays to measure and compare GJIC in monolayers of cells with and without treatment with ouabain (0.1, 1, 10, 50 and 500 nM). We found that ouabain induces a statistically significant enhancement of GJIC in all of these cancer cell lines, albeit with distinct sensitivity. Additionally, we show that synthesis of new nucleotides or protein subunits is not required, and that Csrc, ErK1/2 and ROCK-Rho mediate the signaling mechanisms. These results may contribute to explaining how ouabain influences cancer.

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Na+/K+-ATPase: More than an Electrogenic Pump;International Journal of Molecular Sciences;2024-06-01

2. Ouabain Enhances Gap Junctional Intercellular Communication by Inducing Paracrine Secretion of Prostaglandin E2;International Journal of Molecular Sciences;2021-06-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3