CHANGES IN THE SARCOPLASMIC RETICULUM AND TRANSVERSE TUBULAR SYSTEM OF FAST AND SLOW SKELETAL MUSCLES OF THE MOUSE DURING POSTNATAL DEVELOPMENT

Author:

Luff A. R.1,Atwood H. L.1

Affiliation:

1. From the Department of Zoology, University of Toronto, Toronto, Ontario, Canada.

Abstract

The sarcoplasmic reticulum (SR) and transverse tubular system (TTS) of a fast-twitch muscle (extensor digitorum longus-EDL) and a slow-twitch muscle (soleus-SOL) of the mouse were examined during postnatal development. Muscles of animals newborn to 60 days old were fixed in glutaraldehyde and osmium tetroxide and examined with an electron microscope. At birth the few T tubules were often oriented longitudinally, but at the age of 10 days most of them had a transverse orientation. In the EDL, the estimated volume of the TTS increased from 0.08% at birth to 0.4% in the adult; corresponding values for the SOL were 0.04% at birth and 0.22% in the adult. A similar relative change was observed in surface area of the TTS during development. Calculated on the basis of a 30 µm diameter fiber, the surface area of the TTS in the EDL increased from 0.60 cm2 TTS/cm2 fiber surface in the newborn to 3.1 cm2/cm2 in the adult, compared with 0.15 cm2/cm2 at birth to 1.80 cm2/cm2 in the adult for the SOL. The SR in the newborn muscles occurred as a loose network of tubules that developed rapidly within the subsequent 20 days, especially at the I band level. The volume of the SR increased in the EDL from 1.1% of fiber volume at birth to 5.5% in the adult. In the SOL the change was from 1.7% to 2.9%. The SOL approached the adult values more rapidly than the EDL, although the EDL had more SR and T tubules. Fibers of both EDL and SOL muscles showed variation in Z line thickness, mitochondrial content, and diameter, but over-all differences between the two muscles in amount of SR and TTS were significant. It is considered that the differing amounts of SR and TTS are closely related to the differing speeds of contraction that have been demonstrated for these two muscles.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3