Regulation of reactivated elongation in lysed cell models of teleost retinal cones by cAMP and calcium.

Author:

Gilson C A,Ackland N,Burnside B

Abstract

Teleost retinal cones elongate in the dark and contract in the light. In isolated retinas of the green sunfish Lepomis cyanellus, cone myoids undergo microtubule-dependent elongation from 5 to 45 micron. We have previously shown that cone contraction can be reactivated in motile models of cones lysed with Brij-58. Reactivated contraction is both actin and ATP dependent, activated by calcium, and inhibited by cAMP. We report here that we have obtained reactivated cone elongation in lysed models prepared by the same procedures. Reactivated elongation is ATP dependent, activated by cAMP, and inhibited by calcium. The rate of reactivated elongation is proportional to the cAMP concentration between 10 microM and 0.5 mM, but is constant between 10 microM and 1.0 mM Mg-ATP. No elongation occurs if cAMP or Mg-ATP concentration is less than or equal to 5 microM. Mg-ATP is required for both cAMP-dependent and cAMP-independent processes, suggesting that Mg-ATP is required both for a regulatory process entailing cAMP-dependent phosphorylation and for a force-producing process. Free calcium concentrations greater than or equal to 10(-7) reduce the elongation rate by 78% or more, completely inhibiting elongation at 10(-5) M. This inhibition is not due to competition from calcium-activated contraction. Cytochalasin D blocks reactivated contraction, but does not abolish calcium inhibition of reactivated elongation. Thus calcium directly affects the elongation mechanism. Calcium inhibition is calmodulin dependent. The calmodulin inhibitor trifluoperazine abolishes calcium inhibition of elongation. Furthermore, calcium blocks elongation only if present during the lysis step; subsequent calcium addition has no effect. However, if calcium plus exogenous calmodulin are subsequently added, elongation is again inhibited. Thus calcium inhibition appears to require a soluble calmodulin which is lost shortly after lysis.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3