Protein kinase A regulation of pigment granule motility in retinal pigment epithelial cells from fish, Lepomis spp.

Author:

Leitner Nicole E.,King-Smith ChristinaORCID

Abstract

Abstract Retinomotor movements include elongation and contraction of rod and cone photoreceptors, and mass migration of melanin-containing pigment granules (melanosomes) of the retinal pigment epithelium (RPE) within the eyes of fish, frogs, and other lower vertebrates. Eyes of these animals do not contain dilatable pupils; therefore the repositioning of the rods and cones and a moveable curtain of pigment granules serve to modulate light intensity within the eye. RPE from sunfish (Lepomis spp.) can be isolated from the eye and dissociated into single cells, allowing in vitro studies of the cytoskeletal and regulatory mechanisms of organelle movement. Pigment granule aggregation from distal tips of apical projections into the cell body can be triggered by the application of underivatized cAMP, and dispersion is effected by cAMP washout in the presence of dopamine. While the phenomenon of cAMP-dependent pigment granule aggregation in isolated RPE was described many years ago, whether cAMP acts through the canonical cAMP-PKA pathway to stimulate motility has never been demonstrated. Here, we show that pharmacological inhibition of PKA blocks pigment granule aggregation, and microinjection of protein kinase A catalytic subunit triggers pigment granule aggregation. Treatment with a cAMP agonist that activates the Rap GEF, Epac (Effector protein activated by cAMP), had no effect on pigment granule position. Taken together, these results confirm that cAMP activates RPE pigment granule motility by the canonical cAMP-PKA pathway. Isolated RPE cells labeled with antibodies against PKA RIIα and against PKA-phosphorylated serine/threonine amino acids show diffuse, punctate labeling throughout the RPE cell body and apical projections. Immunoblotting of RPE lysates using the anti-PKA substrate antibody demonstrated seven prominent bands; two bands in particular at 27 and 64 kD showed increased levels of phosphorylation in the presence of cAMP, indicating their phosphorylation could contribute to the pigment granule aggregation mechanism.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Reference47 articles.

1. Pharmacological PKA inhibition: All may not be what it seems;Murray;Science Signal,2008

2. Cyclic AMP signalling;Fimia;Journal of Cell Science,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3