α4-Integrin Mediates Neutrophil-Induced Free Radical Injury to Cardiac Myocytes

Author:

Poon Betty Y.1,Ward Christopher A.2,Cooper Conan B.3,Giles Wayne R.4,Burns Alan R.5,Kubes Paul14

Affiliation:

1. Immunology Research Group, University of Calgary, Calgary, Alberta T2N 1N4, Canada

2. Department of Physiology, Queen's University, Kingston, Ontario K7L 3N6, Canada

3. Department of Pharmacology and Therapeutics, University of Calgary, Calgary, Alberta T2N 1N4, Canada

4. Department of Physiology and Biophysics, University of Calgary, Calgary, Alberta T2N 1N4, Canada

5. Department of Medicine, Section of Cardiovascular Sciences, Baylor College of Medicine, Houston, Texas 77030

Abstract

Previous work has demonstrated that circulating neutrophils (polymorphonuclear leukocytes [PMNs]) adhere to cardiac myocytes via β2-integrins and cause cellular injury via the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase enzyme system. Since PMNs induced to leave the vasculature (emigrated PMNs) express the α4-integrin, we asked whether (a) these PMNs also induce myocyte injury via NADPH oxidase; (b) β2-integrins (CD18) still signal oxidant production, or if this process is now coupled to the α4-integrin; and (c) dysfunction is superoxide dependent within the myocyte or at the myocyte–PMN interface. Emigrated PMNs exposed to cardiac myocytes quickly induced significant changes in myocyte function. Myocyte shortening was decreased by 30–50% and rates of contraction and relaxation were reduced by 30% within the first 10 min. Both α4-integrin antibody (Ab)-treated PMNs and NADPH oxidase–deficient PMNs were unable to reduce myocyte shortening. An increased level of oxidative stress was detected in myocytes within 5 min of PMN adhesion. Addition of an anti–α4-integrin Ab, but not an anti-CD18 Ab, prevented oxidant production, suggesting that in emigrated PMNs the NADPH oxidase system is uncoupled from CD18 and can be activated via the α4-integrin. Addition of exogenous superoxide dismutase (SOD) inhibited all parameters of dysfunction measured, whereas overexpression of intracellular SOD within the myocytes did not inhibit the oxidative stress or the myocyte dysfunction caused by the emigrated PMNs. These findings demonstrate that profound molecular changes occur within PMNs as they emigrate, such that CD18 and associated intracellular signaling pathways leading to oxidant production are uncoupled and newly expressed α4-integrin functions as the ligand that signals oxidant production. The results also provide pathological relevance as the emigrated PMNs have the capacity to injure cardiac myocytes through the α4-integrin–coupled NADPH oxidase pathway that can be inhibited by extracellular, but not intracellular SOD.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3