R2D5 antigen: a calcium-binding phosphoprotein predominantly expressed in olfactory receptor neurons.

Author:

Nemoto Y1,Ikeda J1,Katoh K1,Koshimoto H1,Yoshihara Y1,Mori K1

Affiliation:

1. Department of Neuroscience, Osaka Bioscience Institute, Japan.

Abstract

R2D5 is a mouse monoclonal antibody that labels rabbit olfactory receptor neurons. Immunoblot analysis showed that mAb R2D5 recognizes a 22-kD protein with apparent pI of 4.8, which is abundantly contained in the olfactory epithelium and the olfactory bulb. We isolated cDNA for R2D5 antigen and confirmed by Northern analysis and neuronal depletion technique that R2D5 antigen is expressed predominantly, but not exclusively, in olfactory receptor neurons. Analysis of the deduced primary structure revealed that R2D5 antigen consists of 189 amino acids with calculated M(r) of 20,864 and pI of 4.74, has three calcium-binding EF hands, and has possible phosphorylation sites for Ca2+/calmodulin-dependent protein kinase II (CaM kinase II) and cAMP-dependent protein kinase (A kinase). Using the bacterially expressed protein, we directly examined the biochemical properties of R2D5 antigen. R2D5 antigen binds Ca2+ and undergoes a conformational change in a manner similar to calmodulin. R2D5 antigen is phosphorylated in vitro by CaM kinase II and A kinase at different sites, and 1.81 and 0.80 mol of Pi were maximally incorporated per mol of R2D5 antigen by CaM kinase II and A kinase, respectively. Detailed immunohistochemical study showed that R2D5 antigen is also expressed in a variety of ependymal cells in the rabbit central nervous system. Aside from ubiquitous calmodulin, R2D5 antigen is the first identified calcium-binding protein in olfactory receptor neurons that may modulate olfactory signal transduction. Furthermore our results indicate that olfactory receptor neurons and ependymal cells have certain signal transduction components in common, suggesting a novel physiological process in ependymal cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3