Two pathways for the degradation of the H2 subunit of the asialoglycoprotein receptor in the endoplasmic reticulum.

Author:

Yuk M H1,Lodish H F1

Affiliation:

1. Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142.

Abstract

An intermediate of 35 kD accumulates transiently during ER degradation of the H2 subunit of the asialoglycoprotein receptor; it is derived by an endoproteolytic cleavage in the exoplasmic domain near the transmembrane region. In the presence of cycloheximide all of the precursor H2 is converted to this intermediate, which is degraded only after cycloheximide is removed (Wikström, L., and H. F. Lodish. 1991. J. Cell Biol. 113:997-1007). Here we have generated mutants of H2 that do not form the 35-kD fragment, either in transfected cells or during in vitro translation reactions in the presence of pancreatic microsomes. In transfected cells the kinetics of ER degradation of these mutant proteins are indistinguishable from that of wild-type H2, indicating the existence of a second pathway of ER degradation which does not involve formation of the 35-kD fragment. Degradation of H2 in the ER by this alternative pathway is inhibited by TLCK or TPCK, but neither formation nor degradation of the 35-kD fragment is blocked by these reagents. As determined by NH2-terminal sequencing of the 35-kD fragment, formed either in transfected cells or during in vitro translation reactions in the presence of pancreatic microsomes, the putative cleavage sites are between small polar, uncharged amino acid residues. Substitution of the residues NH2- or COOH-terminal to the cleavage site by large hydrophobic or charged ones decreased the amount of 35-kD fragment formed and in some cases changed the putative cleavage site. Cleavage can also be affected by amino acid substitutions (e.g., to proline or glycine) which change protein conformation. Therefore, the endoprotease that generates the 35-kD fragment has specificity similar to that of signal peptidase. H2a and H2b are isoforms that differ only by a pentapeptide insertion in the exoplasmic juxtamembrane region of H2a. 100% of H2a is degraded in the ER, but up to 30% of H2b folds properly and matures to the cell surface. The sites of cleavage to form the 35-kD fragment are slightly different in H2a and H2b. Two mutant H2b proteins, with either a glycine or proline substitution at the position of insertion of the pentapeptide in H2a, have metabolic fates similar to that of H2a. These mutations are likely to change the protein conformation in this region. Thus the conformation of the juxtamembrane domain of the H2 protein is important in determining its metabolic fate within the ER.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3