Affiliation:
1. *Department of Cell Research and Immunology, George Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel; and
2. McGill Cancer Centre, McGill University, Montréal, Quebec, Canada H3G 1Y6
Abstract
We had previously shown that endoplasmic reticulum (ER)-associated degradation (ERAD) of glycoproteins in mammalian cells involves trimming of three to four mannose residues from the N-linked oligosaccharide Man9GlcNAc2. A possible candidate for this activity, ER mannosidase I (ERManI), accelerates the degradation of ERAD substrates when overexpressed. Although in vitro, at low concentrations, ERManI removes only one specific mannose residue, at very high concentrations it can excise up to four α1,2-linked mannose residues. Using small interfering RNA knockdown of ERManI, we show that this enzyme is required for trimming to Man5–6GlcNAc2 and for ERAD in cells in vivo, leading to the accumulation of Man9GlcNAc2 and Glc1Man9GlcNAc2 on a model substrate. Thus, trimming by ERManI to the smaller oligosaccharides would remove the glycoprotein from reglucosylation and calnexin binding cycles. ERManI is strikingly concentrated together with the ERAD substrate in the pericentriolar ER-derived quality control compartment (ERQC) that we had described previously. ERManI knockdown prevents substrate accumulation in the ERQC. We suggest that the ERQC provides a high local concentration of ERManI, and passage through this compartment would allow timing of ERAD, possibly through a cycling mechanism. When newly made glycoproteins cannot fold properly, transport through the ERQC leads to trimming of a critical number of mannose residues, triggering a signal for degradation.
Publisher
American Society for Cell Biology (ASCB)
Subject
Cell Biology,Molecular Biology
Cited by
125 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献