Molecular isoforms of murine CD44 and evidence that the membrane proximal domain is not critical for hyaluronate recognition.

Author:

He Q1,Lesley J1,Hyman R1,Ishihara K1,Kincade P W1

Affiliation:

1. Immunobiology and Cancer Program, Oklahoma Medical Research Foundation, Oklahoma City 73104.

Abstract

We previously found that the CD44 glycoprotein on some lymphocytes can mediate adhesion to hyaluronate (HA) bearing cells. However, many questions remain about the molecular heterogeneity of CD44 and mechanisms which control its recognition of this ligand. In vitro mutagenesis and DNA sequencing have now been used to investigate the importance of the membrane proximal region of murine CD44 for recognition of soluble or cell surface HA. CD44 with an 83 amino acid deletion in this region mediated binding to soluble ligand and the apparent avidity increased markedly in the presence of a particular antibody to CD44, IRAWB14. The shortened CD44 was however inefficient in mediating adhesion of transfected cells to HA immobilized on cell surfaces. Four new murine isoforms of CD44 were isolated from a carcinoma line by use of the polymerase chain reaction. Only two of them correspond to ones recently discovered in rat and human cells. The longest variant nearly doubled the length of the extracellular portion of the molecule and introduced an additional 20 potential sites for glycosylation. When expressed on T lymphoma cells, all four of the new murine CD44 isoforms were capable of mediating adhesion to HA bearing cells. This result contrasts with a report that a related human CD44 isoform lacks this ability when expressed on B lineage lymphoma cells. The new murine isoforms also conferred the ability to recognize soluble HA and were very responsive to the IRAWB14 antibody. A brief survey of normal murine cell lines and tissues revealed that the hemopoietic isoform was the most abundant species. These findings indicate that the NH2-terminal portion of CD44 is sufficient for HA recognition and that this function is not necessarily abrogated by variations which occur in the membrane proximal domain. They add to the known molecular diversity of CD44 and provide another experimental model in which isoform specific functions can be investigated.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 107 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3