Two ZBP1 KH domains facilitate β-actin mRNA localization, granule formation, and cytoskeletal attachment

Author:

Farina Kim L.1,Hüttelmaier Stefan1,Musunuru Kiran23,Darnell Robert34,Singer Robert H.1

Affiliation:

1. Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, Bronx, NY 10461

2. Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10021

3. Laboratory of Molecular Neuro-Oncology, The Rockefeller University, New York, NY 10021

4. Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10021

Abstract

Chicken embryo fibroblasts (CEFs) localize β-actin mRNA to their lamellae, a process important for the maintenance of cell polarity and motility. The localization of β-actin mRNA requires a cis localization element (zipcode) and involves zipcode binding protein 1 (ZBP1), a protein that specifically binds to the zipcode. Both localize to the lamellipodia of polarized CEFs. ZBP1 and its homologues contain two NH2-terminal RNA recognition motifs (RRMs) and four COOH-terminal hnRNP K homology (KH) domains. By using ZBP1 truncations fused to GFP in conjunction with in situ hybridization analysis, we have determined that KH domains three and four were responsible for granule formation and cytoskeletal association. When the NH2 terminus was deleted, granules formed by the KH domains alone did not accumulate at the leading edge, suggesting a role for the NH2 terminus in targeting transport granules to their destination. RNA binding studies were used to show that the third and fourth KH domains, not the RRM domains, bind the zipcode of β-actin mRNA. Overexpression of the four KH domains or certain subsets of these domains delocalized β-actin mRNA in CEFs and inhibited fibroblast motility, demonstrating the importance of ZBP1 function in both β-actin mRNA localization and cell motility.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 225 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3