Affiliation:
1. Department of Neurology, University of Connecticut Health Center, Farmington 06030, USA.
Abstract
The intracellular distribution of various components of the protein translational machinery was visualized in mouse oligodendrocytes in culture using high resolution fluorescence in situ hybridization and immunofluorescence in conjunction with dual channel confocal laser scanning microscopy. Arginyl-tRNA synthetase, elongation factor 1a, ribosomal RNA, and myelin basic protein mRNA were all co-localized in granules in the processes, veins and membrane sheets of the cell. Colocalization was evaluated by dual channel cross correlation analysis to determine the correlation index (% colocalization) and correlation distance (granule radius), and by single granule ratiometric analysis to determine the distribution of the different components in individual granules. Most granules contained synthetase, elongation factor, ribosomal RNA and myelin basic protein mRNA. These results indicate that several different components of the protein synthetic machinery, including aminoacyl-tRNA synthetases, elongation factors, ribosomes and mRNAs, are colocalized in granules in oligodendrocytes. We propose that these granules are supramolecular complexes containing all of the necessary macromolecular components for protein translation and that they represent a heretofore undescribed subcellular organization of the protein synthetic machinery. This spatial organization may increase the efficiency of protein synthesis and may also provide a vehicle for transport and localization of specific mRNAs within the cell.
Publisher
The Company of Biologists
Cited by
136 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献