A PATTERN OF EPIDERMAL CELL MIGRATION DURING WOUND HEALING

Author:

Krawczyk Walter S.1

Affiliation:

1. From the Department of Oral Histopathology and Periodontology, Harvard School of Dental Medicine, Boston, Massachusetts 02115, and the Department of Dermatologic Genetics, New England Medical Center Hospitals, Boston, Massachusetts 02116

Abstract

Epidermal repair during wound healing is under investigation at both the light and electron microscopic levels. Suction-induced subepidermal blisters have been employed to produce two complementary model wound healing systems. These two model systems are: (a) intact subepidermal blisters, and (b) opened subepidermal blisters (the blister roof was removed immediately after induction, leaving an open wound). From these studies a pattern of movement for epidermal cells in wound healing is proposed. This pattern of movement is the same for both model systems. Epidermal cells appear to move by rolling or sliding over one another. Fine fibers oriented in the cortical cytoplasm may play an important role in the movement of these epidermal cells. Also instrumental in mediating this movement are intercellular junctions (desmosomes) and a firm attachment to a substrate through hemidesmosomes. In the intact subepidermal blisters hemidesmosomal attachment is made to a continuous and homogeneous substrate, the retained basal lamina. In the opened subepidermal blisters contact of epidermal cells is made to a discontinuous substrate composed of sporadic areas of fibrin and underlying mesenchymal cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 339 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3