Mannose-specific endocytosis receptor of alveolar macrophages: demonstration of two functionally distinct intracellular pools of receptor and their roles in receptor recycling.

Author:

Tietze C,Schlesinger P,Stahl P

Abstract

Receptor-mediated endocytosis of rat preputial beta-glucuronidase and the glycoconjugate mannose-BSA by rat alveolar macrophages is inhibited by chloroquine and ammonium chloride. We have previously reported that these drugs cause a loss of cell surface binding activity and that they do not inhibit internalization of receptor ligand complexes when incubated with cells at 37 degrees C. In this report we more clearly delineate the intracellular site of weak base inhibition of receptor recycling and the mechanism of that inhibition. From our analysis of the kinetics of ligand transport we conclude that there are two functionally distinct intracellular pools of receptor. One of these, the cycling pool, is not sensitive to the presence of weak bases, and receptor-ligand complexes return from this pool to the cell surface intact. The second pool is responsible for the time-dependent intracellular delivery of ligand to acid vesicles, which is inhibited by weak bases. Chloroquine and ammonium chloride appear to inhibit the dissociation of receptor-ligand complexed in this second pool and thereby the production of free receptors for the continuation of receptor-mediated endocytosis. We examine the internalization and binding of ligand in normal and paraformaldehyde-treated cells and find that these are strongly affected by pH. In particular, the dissociation rate of receptor ligand complexes is enhanced greater than 7.5 fold by lowering the medium pH from 7 to 6. From these results we propose that weak bases raise the pH of acid intracellular compartments, slowing the rate of receptor-ligand dissociation and thereby reducing the cellular pool of free receptors available for further uptake of ligand. In addition, we demonstrate that receptor-ligand complexes cannot return to the cell surface from the amine-sensitive (acid) intracellular pool that led us to call this the nonreleasable pool. This final observation indicates that receptor movements through these two pools are functionally distinct processes.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 211 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3