Affiliation:
1. Institute for Clinical Neurobiology, University of Wuerzburg, 97080 Wuerzburg, Germany
2. Department of Molecular and Cellular Biochemistry, The Ohio State University, Columbus, OH 43210
Abstract
Spinal muscular atrophy (SMA), a common autosomal recessive form of motoneuron disease in infants and young adults, is caused by mutations in the survival motoneuron 1 (SMN1) gene. The corresponding gene product is part of a multiprotein complex involved in the assembly of spliceosomal small nuclear ribonucleoprotein complexes. It is still not understood why reduced levels of the ubiquitously expressed SMN protein specifically cause motoneuron degeneration. Here, we show that motoneurons isolated from an SMA mouse model exhibit normal survival, but reduced axon growth. Overexpression of Smn or its binding partner, heterogeneous nuclear ribonucleoprotein (hnRNP) R, promotes neurite growth in differentiating PC12 cells. Reduced axon growth in Smn-deficient motoneurons correlates with reduced β-actin protein and mRNA staining in distal axons and growth cones. We also show that hnRNP R associates with the 3′ UTR of β-actin mRNA. Together, these data suggest that a complex of Smn with its binding partner hnRNP R interacts with β-actin mRNA and translocates to axons and growth cones of motoneurons.
Publisher
Rockefeller University Press
Cited by
555 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献