Ptbp2 re-expression rescues axon growth defects in Smn-deficient motoneurons

Author:

Salehi Saeede,Zare Abdolhossein,Gandhi Gayatri,Sendtner Michael,Briese Michael

Abstract

Spinal muscular atrophy (SMA) is a neuromuscular disorder caused by mutations or deletions in the survival motoneuron 1 (SMN1) gene, resulting in deficiency of the SMN protein that is essential for motoneuron function. Smn depletion in mice disturbs axonal RNA transport and translation, thereby contributing to axon growth impairment, muscle denervation, and motoneuron degeneration. However, the mechanisms whereby Smn loss causes axonal defects remain unclear. RNA localization and translation in axons are controlled by RNA-binding proteins (RBP) and we recently observed that the neuronal RBP Ptbp2 modulates axon growth in motoneurons. Here, we identify Smn as an interactor of Ptbp2 in the cytosolic compartments of motoneurons. We show that the expression level of Ptbp2 is reduced in axons but not in the somata of Smn-depleted motoneurons. This is accompanied by reduced synthesis of the RBP hnRNP R in axons. Re-expression of Ptbp2 in axons compensates for the deficiency of Smn and rescues the defects in axon elongation and growth cone maturation observed in Smn-deficient motoneurons. Our data suggest that Ptbp2 and Smn are components of cytosolic mRNP particles, contributing to the precise spatial and temporal control of protein synthesis within axons and axon terminals.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3