Selection of tunicamycin-resistant Chinese hamster ovary cells with increased N-acetylglucosaminyltransferase activity.

Author:

Criscuolo B A,Krag S S

Abstract

Chinese hamster ovary (CHO) cells resistant to the antibiotic tunicamycin (TM) have been isolated by a stepwise selection procedure with progressive increments of TM added to the medium. TM inhibits asparagine-linked glycoprotein biosynthesis by blocking the transfer of N-acetylglucosamine-1-phosphate from UDP-N-acetylglucosamine to the lipid carrier. The TM-resistant cells exhibited a 200-fold increase in their LD50 for TM and were morphologically distinct from the parental cells. The rate of asparagine-linked glycoprotein biosynthesis was the same for wild-type and TM-resistant cells. Membrane preparations from TM-resistant cells cultured for 16 d in the absence of TM had a 15-fold increase in the specific activity of the UDP-N-acetylglucosamine:dolichol phosphate N-acetylglucosamine-1-phosphate transferase as compared to membranes of wild-type cells. The products of the in vitro assay were N-acetylglucosaminylpyrophosphoryl-lipid and N,N'-diacetylchitobiosylpyrophosphoryl-lipid for membranes from both TM-resistant and wild-type cells. The transferase activity present in membrane preparations from wild-type of TM-resistant cells was inhibited by comparable levels of TM. The data presented are consistent with overproduction of enzyme as the mechanism of resistance in these variant CHO cells.

Publisher

Rockefeller University Press

Subject

Cell Biology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3