Role of the COOH-terminal nonhelical tailpiece in the assembly of a vertebrate nonmuscle myosin rod.

Author:

Hodge T P1,Cross R1,Kendrick-Jones J1

Affiliation:

1. MRC Laboratory of Molecular Biology, Cambridge, United Kingdom.

Abstract

A short nonhelical sequence at the COOH-terminus of vertebrate nonmuscle myosin has been shown to enhance myosin filament assembly. We have analyzed the role of this sequence in chicken intestinal epithelial brush border myosin, using protein engineering/site-directed mutagenesis. Clones encoding the rod region of this myosin were isolated and sequenced. They were truncated at various restriction sites and expressed in Escherichia coli, yielding a series of mutant myosin rods with or without the COOH-terminal tailpiece and with serial deletions from their NH2-termini. Deletion of the 35 residue COOH-terminal nonhelical tailpiece was sufficient to increase the critical concentration for myosin rod assembly by 50-fold (at 150 mM NaCl, pH 7.5), whereas NH2-terminal deletions had only minor effects. The only exception was the longest NH2-terminal deletion, which reduced the rod to 119 amino acids and rendered it assembly incompetent. The COOH-terminal tailpiece could be reduced by 15 amino acids and it still efficiently promoted assembly. We also found that the tailpiece promoted assembly of both filaments and segments; assemblies which have different molecular overlaps. Rod fragments carrying the COOH-terminal tailpiece did not promote the assembly of COOH-terminally deleted material when the two were mixed together. The tailpiece sequence thus has profound effects on assembly, yet it is apparently unstructured and can be bisected without affecting its function. Taken together these observations suggest that the nonhelical tailpiece may act sterically to block an otherwise dominant but unproductive molecular interaction in the self assembly process and does not, as has been previously thought, bind to a specific target site(s) on a neighboring molecule.

Publisher

Rockefeller University Press

Subject

Cell Biology

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3