Performance of Hydrothermally Prepared NiMo Dispersed on Sulfated Zirconia Nano-Catalyst in The Conversion of Used Palm Cooking Oil into Jet Fuel Range Bio-Hydrocarbons

Author:

Wijaya Karna1ORCID,Saviola Aldino Javier1ORCID,Amin Amalia Kurnia2ORCID,Vebryana Marini Fairuz1,Bhagaskara Adyatma1,Ekawati Hilda Anggita1,Ramadhani Saffana1,Saputra Dita Adi3ORCID,Agustanhakri Agustanhakri3

Affiliation:

1. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Gadjah Mada, Yogyakarta 55281, Indonesia

2. Research Center for Chemistry, National Research and Innovation Agency (BRIN), The B. J. Habibie Science and Technology Area, South Tangerang, Banten 15314, Indonesia

3. Research Center for Energy Conversion and Conservation, National Research and Innovation Agency (BRIN), The B. J. Habibie Science and Technology Area, South Tangerang, Banten 15314, Indonesia

Abstract

Human efforts to overcome environmental problems from using fossil fuels continue, such as hydroconversion of biomass into bio-jet fuel. Research on producing a jet fuel range of bio-hydrocarbons from used palm cooking oil catalyzed by sulfated zirconia impregnated with nickel-molybdenum bimetal has been successfully conducted. The hydrothermal method synthesized the nano-catalyst material in the sulfation and impregnation processes. The hydroconversion process was carried out at atmospheric pressure and a temperature of 300–600 °C for 2 h with a hydrogen gas flow rate of 20 mL/min and a catalyst-to-feed ratio of 1:100 (wt%). Compared with zirconia and sulfated zirconia, NiMo-impregnated sulfated zirconia showed the best activity and selectivity in bio-jet fuel production with liquid product and selectivity of 61.07% and 43.49%, respectively. This catalyst also performed well in three consecutive runs, with bio-jet fuel selectivity in the second and third runs of 51.68% and 30.86%, respectively. Copyright © 2024 by Authors, Published by BCREC Publishing Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).

Funder

Universitas Gadjah Mada

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3