Bio-aviation fuel via catalytic hydrocracking of waste cooking oils

Author:

El-Araby R.,Abdelkader E.,El Diwani G.,Hawash S. I.

Abstract

Abstract Background Biomass fuels (bio-jet fuel) have recently attracted considerable attention as alternatives to conventional jet fuel. They have become the focus of aircraft manufacturers, engines, oil companies, governments and researchers alike. This study is concerned with the production of biojet fuel using waste cooking oil (WCO). Batch reactor is used for running the experimental study. The catalytic cracking products are investigated by GC mass spectra. Final products from different reaction conditions are subjected to fractional distillation. The (Bio kerosene) fraction was compared with the conventional jet A-1 and showed that it met the basic jet fuel specifications. Optimum reaction conditions are obtained at (450 °C), pressure of (120 bars), catalyst dose (2.5% w/v), reaction time (60 min) and hydrogen pressure 4 atmosphere. The aim of this study is to produce bio aviation fuel according to specifications and with a low freezing point from waste cooking oil in one step using a laboratory prepared catalyst and with a low percentage of hydrogen to complete the process of cracking and deoxygenation in one reactor, which is naturally reflected positively on the price of the final product of bio aviation fuel. Results The results indicated that the product obtained from WCO shows promising potential bio aviation fuels, having a low freezing point (− 55 °C) and that all bio kerosene’s specifications obtained at these conditions follow the international standard specifications of aviation turbine fuel. Conclusion Biojet fuel obtained from WCO has fairly acceptable physico-chemical properties compared to those of petroleum-based fuel. Adjustment of the hydro catalytic cracking reaction conditions was used to control quantities and characteristics of produced bio aviation fuel. Taking into consideration the economic evaluation WCO is preferable as raw material for bio aviation fuel production due to its low cost and its contribution in environmental pollution abatement. Blend of 5% bio aviation with jet A-1 (by volume) can be used in the engine without any modifications and a successful test of blended aviation fuel with 10% bio aviation has been achieved on Jet-Cat 80/120 engine.

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

Reference38 articles.

1. ASTM International (2015) ASTM D1655-15de1. Standard specification for aviation turbine fuel. https://doi.org/10.1520/D1655-15DE01

2. Bailis RE, Bake JE (2010) Greenhouse gas emissions and land use change from Jatropha–curcas based jet fuel in Brazil. Environ Sci Technol 44(22):8684–8691

3. Battiston S, Rigo C, Severo EDC, Mazutti MA, Kuhn RC, Gündel A, Foletto EL (2014) Synthesis of zinc aluminate (ZnAl2O4) spinel and its application as photocatalyst. Mater Res 17(3):734–738

4. Blakeley K (2012) DOD alternative fuels: policy, initiatives and legislative activity. Congressional Research Service

5. Bousdira K, Nouri L, Legrand J, Bafouloulou Y, Abismail M, Chekhar H, Babahani M (2014) A nove rview of the chemical composition of phoenicicol biomass fuel in Guerraraoasis. Revue des Energies Renouvel ables SIENR’14 Ghardaïa, pp 99–108

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3