Catalytic Conversion of 5-Hydroxymethylfurfural and Fructose to 5-Ethoxymethylfurfural over Sulfonated Biochar Catalysts

Author:

Du Ziting1,Li Fukun1,Yang Ronghe1,Cao Qingya1,Yang Delong1,Dai Jinhang1ORCID

Affiliation:

1. College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China

Abstract

5-Hydroxymethylfurfural (HMF) is a key platform compound that can be produced by the dehydration of typical carbohydrates like glucose and fructose. Among the derivatives of HMF, 5-ethoxymethylfurfural (EMF) is the etherification product of HMF with ethanol. Owing to some advantages (i.e., high energy density), EMF has been regarded as a potential liquid fuel. Therefore, catalytic conversion of   HMF and fructose to EMF is of significance, especially using heterogeneous catalysts. In this paper, we demonstrated the preparation of biomass-based catalysts for the synthesis of EMF from HMF and fructose. Some sulfonated biochar catalysts were prepared by the carbonization of biomass-based precursors at high temperature in N2, followed by the subsequent sulfonation process employing concentered H2SO4 as sulfonation reagent. The obtained catalysts were characterized by scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), X-ray diffraction (XRD), and element analysis. The catalytic conversion of HMF to EMF was carried out in ethanol, providing a 78% yield with complete conversion at 120 °C. The catalytic activity of the used catalyst showed slight decrease for the etherification of HMF. Moreover, the catalysts were effective for the direct conversion of fructose towards EMF in 64.9% yield. Copyright © 2023 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Funder

Natural Science Foundation of Chongqing

Publisher

Bulletin of Chemical Reaction Engineering and Catalysis

Subject

Process Chemistry and Technology,Catalysis,General Chemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3