Recent progress in the development of advanced biofuel 5-ethoxymethylfurfural

Author:

Chen Binglin,Yan Guihua,Chen Gaofeng,Feng Yunchao,Zeng Xianhai,Sun Yong,Tang Xing,Lei Tingzhou,Lin Lu

Abstract

AbstractBiomass-derived 5-ethoxymethylfurfural (EMF) with excellent energy density and satisfactory combustion performance holds great promise to meet the growing demands for transportation fuels and fuel additives to a certain extent. In this review, we summarized the relative merits of the EMF preparation from different feedstocks, such as platform chemicals, biomass sugars and lignocellulosic biomass. Advances for EMF synthesis over homogeneous (i.e. inorganic acids and soluble metal salts), heterogeneous catalysts (i.e. zeolites, heteropolyacid-based hybrids, sulfonic acid-functionalized catalysts, and others) or mixed-acid catalysts were performed as well. Additionally, the emerging development for the EMF production was also evaluated in terms of the different solvents system (i.e. single-phase solvents, biphasic solvents, ionic liquids, and deep eutectic solvents). It is concluded with current challenges and prospects for advanced biofuel EMF preparation in the future.

Funder

National Natural Science Foundation of China

specical fund for Fujian Ocean High-Tech Industry Development

Natural Science Foundation of Fujian Province

Energy development Foundation of the College of Energy, Xiamen University

Publisher

Springer Science and Business Media LLC

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3