Optimization of transport constraints and quality of service for joint resolution of uncertain scheduling and the job-shop problem with routing (JSSPR) as opposed to the job-shop problem with transport (JSSPT)

Author:

Assafra Khadija,Alaya Bechir,Zidi Salah,Zrigui Mounir

Abstract

To better meet the qualitative and quantitative requirements of customers or relevant sector managers, workshop environments are implementing increasingly complex task management systems. The job shop scheduling problem (JSSP) involves assigning each task to a single machine while scheduling many tasks on different machines. Finding the best scheduling for machines is one of the challenging optimizations of difficult non-deterministic polynomial (NP) time problems. The fundamental goal of optimization is to shorten the makespan (total execution time of all tasks). This paper is interested in the joint resolution of scheduling and transport problems and more particularly the Job-shop problem with Routing (JSSPR) as opposed to the Job-shop problem with Transport (JSSPT). These two problems are modeled in the form of a disjunctive graph. For the JSSPT, the solution to the transport problem is not linked to any quality of service (QoS) criterion and the solution is therefore often semi-active. The Job-shop with Routing explicitly considers transport operations and uses algorithms from the transport community to solve the transport problem. It is shown that the routing part of the JSSPR is a problem of the vehicle routing family and of the Pickup and Delivery Problem family. QoS in the JSSPR is defined by the duration of tours, the duration of transport of parts and the waiting time for them. A new evaluation function – named Time-Lag Insertion Heuristic (TLH) – is proposed to evaluate a disjunctive graph by simultaneously minimizing the makespan and maximizing the quality of service. Thus, the solution obtained is not semi-active, but a compromise between the different criteria. This evaluation function is included in a metaheuristic. Our numerical evaluations demonstrate that, on the one hand, the TLH evaluation can find almost optimal solutions regarding the QoS criterion; and on the other hand, the TLH evaluation is not very sensitive to the order of insertion of the maximum time-lags during the different minimization steps.

Publisher

Growing Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3