Impact of dual uptime-reducing strategies, postponement, multi-delivery, and rework on a multiproduct fabrication-shipping problem

Author:

Peter Chiu Yuan-Shyi,Yan Ting-Fang,Chiu Singa Wang,Wang Hui-Chi,Chiu Tiffany

Abstract

This study examines the joint impact of outsourcing, overtime, multi-delivery, rework, and postponement on a multiproduct fabrication problem. A growing/clear trend in today’s customer requirements turned into rapid response and desired quality of multi-merchandises and multiple fixed-amount deliveries in equal-interval time. To satisfy customers’ expectations, current manufacturing firms must effectively design/plan their multiproduct production scheme with minimum fabrication-inventory-shipping expenses and under confined capacity. Motivated by assisting manufacturing firms in making the right production decision, this study develops a decision-support delayed-differentiation model considering multi-shipment, rework, and dual uptime-reducing strategies (namely, overtime and outsourcing). Our delayed-differentiation model comprises stage one, which makes all common/standard parts of multi-end-merchandises, and stage two, which produces multiple end merchandise. For cutting making times, the study proposes subcontracting a portion of the common/standard part’s lot size and adopting overtime-making end merchandise in stage two. The screening and reworking tasks identify and repair faulty items to ensure customers’ desired quality. The finished lots of end merchandise are divided into a few equal-amount shipments and distributed to customers in equal-interval time. We employ mathematical derivation and optimization methodology to derive the annual expected fabrication- inventory-shipping expense and the cost-minimized production-shipping policy. A numerical demonstration is presented to exhibit our research scheme’s applicability and exposes the studied problem’s critical managerial insights, which help the management make beneficial decisions.

Publisher

Growing Science

Subject

Industrial and Manufacturing Engineering

Reference1 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3