An improved black widow optimization (IBWO) algorithm for solving global optimization problems

Author:

Abu-Hashem Muhannad A.,Shambour Mohd Khaled

Abstract

One of the primary goals of optimization approaches is to strike a balance between exploitation and exploration strategies, thereby enhancing the efficiency of the search process. To improve this balance, considerable research efforts have been directed towards refining these strategies. This paper introduces a novel exploration approach for the Black Widow Optimization (BWO) algorithm, termed Improved BWO (IBWO), aimed at achieving a robust equilibrium between global and local search strategies. The proposed approach tracks and remembers the effective research areas during the research iteration and uses them to direct the subsequent research process toward the most promising areas of the search space. Consequently, this method facilitates convergence towards optimal global solutions, leading to the generation of higher-quality solutions. To evaluate its performance, IBWO is compared with five optimization techniques, including BWO, GA, PSO, ABC, and BBO, across 39 benchmark functions. Simulation results demonstrate that IBWO consistently maintains precision in performance, achieving superior fitness values in 87.2%, 74.4%, and 69.2% of total trials across three distinct simulation settings. These outcomes underscore the efficacy of IBWO in effectively leveraging prior search space information to enhance the balance between exploitation and exploration capabilities. The proposed IBWO has broad applicability, addressing real-world optimization challenges in pilgrim crowd management and transportation during Hajj, supply chain logistics, and energy distribution optimization.

Publisher

Growing Science

Reference1 articles.

1. An improved black widow optimization (IBWO) algorithm for solving global optimization problems;Abu-Hashem;International Journal of Industrial Engineering Computations,2024

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An improved black widow optimization (IBWO) algorithm for solving global optimization problems;International Journal of Industrial Engineering Computations;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3