Modeling and optimization of the hybrid flow shop scheduling problem with sequence-dependent setup times

Author:

Xue Huiting,Meng Leilei,Duan Peng,Zhang Biao,Zou Wenqiang,Sang Hongyan

Abstract

The hybrid flow shop scheduling problem (HFSP) is an extension of the classic flow shop scheduling problem and widely exists in real industrial production systems. In real production, sequence-dependent setup times (SDST) are very important and cannot be neglected. Therefore, this study focuses HFSP with SDST (HFSP-SDST) to minimize the makespan. To solve this problem, a mixed-integer linear programming (MILP) model to obtain the optimal solutions for small-scale instances is proposed. Given the NP-hard characteristics of HFSP-SDST, an improved artificial bee colony (IABC) algorithm is developed to efficiently solve large-sized instances. In IABC, permutation encoding is used and a hybrid representation that combines forward decoding and backward decoding methods is designed. To search for the solution space that is not included in the encoding and decoding, a problem-specific local search strategy is developed to enlarge the solution space. Experiments are conducted to evaluate the effectiveness of the MILP model and IABC. The results indicate that the proposed MILP model can find the optimal solutions for small-scale instances. The proposed IABC performs much better than the existing algorithms and improves 61 current best solutions of benchmark instances.

Publisher

Growing Science

Reference1 articles.

1. Modeling and optimization of the hybrid flow shop scheduling problem with sequence-dependent setup times;Xue;International Journal of Industrial Engineering Computations,2024

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3