Optimizing large scale bin packing problem with hybrid harmony search algorithm

Author:

Adamuthe Amol C.,Nitave Tushar R.

Abstract

Bin packing problem (BPP) is a combinatorial optimization problem with a wide range of applications in fields such as financial budgeting, load balancing, project management, supply chain management. Harmony search algorithm (HSA) is widely used for various real-world and engineering problems due to its simplicity and efficient problem solving capability. Literature shows that basic HSA needs improvement in search capability as the performance of the algorithm degrades with increase in the problem complexity. This paper presents HSA with improved exploration and exploitation capability coupled with local iterative search based on random swap operator for solving BPP. The study uses the despotism based approach presented by Yadav et al. (2012) [Yadav P., Kumar R., Panda S.K., Chang, C. S. (2012). An intelligent tuned harmony search algorithm for optimisation. Information Sciences, 196, 47-72.] to divide Harmony memory (HM) into two categories which helps to maintain balance between exploration and exploitation. Secondly, local iterative search explores multiple neighborhoods by exponentially swapping components of solution vectors. A problem specific HM representation, HM re-initialization strategy and two adaptive PAR strategies are tested. The performance of proposed HSA is evaluated on 180 benchmark instances which consists of 100, 200 and 500 objects. Evaluation metrics such as best, mean, success rate, acceleration rate and improvement measures are used to compare HSA variations. The performance of the HSA with iterative local search outperforms other two variations of HSA.

Publisher

Growing Science

Subject

Industrial and Manufacturing Engineering

Reference1 articles.

1. Optimizing large scale bin packing problem with hybrid harmony search algorithm;Adamuthe;International Journal of Industrial Engineering Computations,2021

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3