To reduce maximum tardiness by Seru Production: model, cooperative algorithm combining reinforcement learning and insights

Author:

Fu Guanghui,Yu Yang,Sun Wei,Kaku Ikou

Abstract

The maximum tardiness reflects the worst level of service associated with customer needs; thus, the principle that seru production reduces the maximum tardiness is investigated, and a model to minimize the maximum tardiness of the seru production system is established. In order to obtain the exact solution, the non-linear seru production model with minimizing the maximum tardiness is split into a seru formation model and a linear seru scheduling model. We propose an efficient cooperative algorithm using a genetic algorithm and an innovative reinforcement learning algorithm (CAGARL) for large-scale problems. Specifically, the GA is designed for the seru formation problem. Moreover, the QL-seru algorithm (QLSA) is designed for the seru scheduling problem by combining the features of meta-heuristics and reinforcement learning. In the QLSA, we design an innovative QL-seru table and two state trimming rules to save computational time. After extensive experiments, compared with the previous algorithm, CAGARL improved by an average of 56.6%. Finally, several managerial insights on reducing maximum tardiness are proposed.

Publisher

Growing Science

Subject

Industrial and Manufacturing Engineering

Reference1 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3