MILP of multitask scheduling of geographically distributed maintenance tasks

Author:

Allaham Hamed,Dalalah Doraid

Abstract

Due to its proactive impact on the serviceability of components in a system, preventive maintenance plays an important role particularly in systems of geographically spread infrastructure such as utilities networks in commercial buildings. What makes such systems differ from the classical schemes is the routing and technicians' travel times. Besides, maintenance in commercial buildings is characterized by its short tasks’ durations and spatial distribution within and between different buildings, a class of problems that has not been suitably investigated. Although it is not trivial to assign particular duties solely to multi-skilled teams under limited time and capacity constraints, the problem becomes more challenging when travel routes, durations and service levels are considered during the execution of the daily maintenance tasks. To address this problem, we propose a Mixed Integer Linear Programming Model that considers the above settings. The model exact solution recommends collaborative choices that include the number of maintenance teams, the selected tasks, routes, tasks schedules, all detailed to days and teams. The model will reduce the cost of labor, replacement parts, penalties on service levels and travel time. The optimization model has been tested using different maintenance scenarios taken from a real maintenance provider in the UAE. Using CPLEX solver, the findings demonstrate an inspiring time utilization, schedules of minimal routing and high service levels using a minimum number of teams. Different travel speeds of diverse assortment of tasks, durations and cost settings have been tested for further sensitivity analysis.

Publisher

Growing Science

Subject

Industrial and Manufacturing Engineering

Reference1 articles.

1. MILP of multitask scheduling of geographically distributed maintenance tasks;Allaham;International Journal of Industrial Engineering Computations,2022

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3