Author:
Xu Song,Zong Jianfan,Liu Lu,Yang Wenting,Xu Lu
Abstract
With the increasing complexity of the distribution environment, customers usually propose higher requirements, such as independent loading of local and foreign cold-chain items in the event of an emergency. Moreover, minimum fuel volume plays an important role in the process of transportation with different speeds and different kinds of vehicles. In this paper, we present a new mathematical model to characterize cold-chain vehicle routing optimization with independent loading of local and foreign items and minimum fuel volume. To address the above mathematical model, an extended particle swarm optimization (PSO) algorithm is proposed by combining original PSO with 2-opt optimization to improve diversity and reduce convergence speed. Six sets of experiments are set to verify the practical performance and stability of the extended PSO algorithm based on three standard datasets of C201, R201, and RC201 from Solomon.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献