A case study of whale optimization algorithm for scheduling in C2M model

Author:

Shan Hongying,Shan Xinze,Zhang Libin,Qin Mengyao,Peng Peiyang,Meng Zunyan

Abstract

With the continuous upgrading of industrial technology and information technology, consumers can deeply participate in the whole life cycle of products and realize customized production. These unprecedented changes have brought consumers and manufacturers closer together, resulting in the intelligent business model of "Internet + Customized Production" and "Customer to Manufacturer (C2M)". C2M has been adopted by more and more companies. However, the transition from traditional business models to C2M is a problem that every company must face and solve. Personalized orders of many varieties and small lots put enormous pressure on the production of mainly labor-intensive electronic assembly companies. The theoretical findings of Industry 4.0 and Lean Manufacturing show that people play a central role in assembly operations. As an important element of the production system, worker scheduling has a direct impact on delivery time and cost. Worker scheduling requires not only matching people to jobs, but also considering flexible employment. According to the "Learning Curve" theory, workers with learning potential can continuously enrich their skills and work efficiency will show dynamic changes. Therefore, under the condition of shortest order delivery time and lowest cost, worker scheduling considering the learning effect becomes a challenge for enterprise decision makers. Firstly, the production method of manufacturing industry in C2M environment is studied. Then, based on single-skill task and multi-skill task, respectively, a learning curve-based model of dynamic change in worker skill level is constructed. And this model is used as the input of the assembly line worker scheduling model. Secondly, an Elite Non-dominant Sorting Whale Optimization Algorithm (ENS-WOA) is designed for this multi-objective optimization problem. The correctness and feasibility of the proposed algorithm are verified by selecting classical arithmetic cases for experimental comparison with other algorithms. Finally, the established worker efficiency change model, worker scheduling model and the proposed algorithm are applied to optimize the assembly line of water pump products of Company B, which is being transformed to C2M, and solved by MATLAB software. The results show that the model proposed in this paper is effective, stable and practical compared with the worker costs and delivery period required to complete the order in the original assembly line. Worker costs were reduced by 29.02% and orders were completed approximately 10 days earlier.

Publisher

Growing Science

Reference1 articles.

1. A case study of whale optimization algorithm for scheduling in C2M model;Shan;International Journal of Industrial Engineering Computations,2024

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A case study of whale optimization algorithm for scheduling in C2M model;International Journal of Industrial Engineering Computations;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3