The implementation of the ARIMA-ARCH model using data mining for forecasting rainfall in Bandung city

Author:

Monika Putri,Ruchjana Budi Nurani,Abdullah Atje Setiawan

Abstract

A time series is a stochastic process which is arranged by time simultaneously. In this article, a time series model is used in accordance with Box-Jenkins' procedure. The Box-Jenkins procedure consists in identifying the model, estimating the parameters and diagnostic checking. The time series model is differentiated according to the number of variables, i.e. univariate and multivariate. The univariate method for the time series model that is often used is the Autoregressive Integrated Moving Average (ARIMA) model and the multivariate time series model is the Vector Autoregressive Integrated Moving Average (VARIMA) model. In this research, we studied the ARIMA model which is studied with a non-constant error variance. In this case, the Autoregressive Conditional Heteroscedasticity (ARCH) model is applied to outgrow the non-constant error variance. Selection of the best model by examining the minimum AIC for each model. The ARIMA-ARCH model is implemented on rainfall data in Bandung city with Knowledge Discovery in Database (KDD) in Data Mining. The methodology in the KDD process, including pre-processing, data mining process, and post-processing. Based on the results of model fitting, the best model is the ARIMA (2,1,4)-ARCH (1) model. The result of forecasting rainfall in Bandung shows a MAPE value is 11%, which has a similar pattern with actual data for short time 2-4 days. From these results, we conclude that the ARIMA-ARCH model is a good model for forecasting the rainfall in Bandung city.

Publisher

Growing Science

Subject

Artificial Intelligence,Computer Networks and Communications,Computer Science Applications,Communication,Information Systems,Software

Reference1 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3