A hybrid FJA-ALNS algorithm for solving the multi-compartment vehicle routing problem with a heterogeneous fleet of vehicles for the fuel delivery problem

Author:

Chowmali Wasana,Sukto Seekharin

Abstract

This paper proposes a new hybrid algorithm to solve the multi-compartment vehicle routing problem (MCVRP) with a heterogeneous fleet of vehicles for the fuel delivery problem of a previous study of twenty petrol stations in northeastern Thailand. The proposed heuristic is called the Fisher and Jaikumar Algorithm with Adaptive Large Neighborhood Search (FJA-ALNS algorithm). The objective of this case is to minimize the total distance, while using a minimum number of multi-compartment vehicles. In the first phase, we used the FJA to solve the MCVRP for the fuel delivery problem. The results from solving the FJA were utilized to be the initial solutions in the second phase. In the second phase, a hybrid algorithm, namely the FJA-ALNS algorithm, has been developed to improve the initial solutions of the individual FJA. The results from the FJA-ALNS algorithm are compared with the exact method (LINGO software), individual FJA and individual ALNS. For small-sized problems (N=5), the results of the proposed FJA-ALNS and all methods provided no different results from the global optimal solution, but the proposed FJA-ALNS algorithm required less computational time. For larger-sized problems, LINGO software could not find the optimal solution within the limited period of computational time, while the FJA-ALNS algorithm provided better results with much less computational time. In solving the four numerical examples using the FJA-ALNS algorithm, the result shows that the proposed FJA-ALNS algorithm is effective for solving the MCVRP in this case. Undoubtedly, future work can apply the proposed FJA-ALNS algorithm to other practical cases and other variants of the VRP in real-world situations.

Publisher

Growing Science

Subject

General Decision Sciences

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3