Author:
Naik Anima,Chokkalingam Pradeep Kumar
Abstract
In this paper, we propose the binary version of the Social Group Optimization (BSGO) algorithm for solving the 0-1 knapsack problem. The standard Social Group Optimization (SGO) is used for continuous optimization problems. So a transformation function is used to convert the continuous values generated from SGO into binary ones. The experiments are carried out using both low-dimensional and high-dimensional knapsack problems. The results obtained by the BSGO algorithm are compared with other binary optimization algorithms. Experimental results reveal the superiority of the BSGO algorithm in achieving a high quality of solutions over different algorithms and prove that it is one of the best finding algorithms especially in high-dimensional cases.
Subject
General Decision Sciences
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献