1. ANANDKUMAR, A., FOSTER, D. P., HSU, D. J., KAKADE, S. M. and LIU, Y.-K. (2012). A spectral algorithm for latent Dirichlet allocation. In Advances in Neural Information Processing Systems 25 (F. Pereira, C. J. C. Burges, L. Bottou and K. Q. Weinberger, eds.) 917–925. Curran Associates, Red Hook.
2. ARORA, S., GE, R., HALPERN, Y., MIMNO, D. M., MOITRA, A., SONTAG, D., WU, Y. and ZHU, M. (2013). A practical algorithm for topic modeling with provable guarantees. In ICML (2) 280–288.
3. ARORA, S., GE, R., KOEHLER, F., MA, T. and MOITRA, A. (2016). Provable algorithms for inference in topic models. In Proceedings of the 33rd International Conference on Machine Learning (M. F. Balcan and K. Q. Weinberger, eds.). Proceedings of Machine Learning Research 48 2859–2867. PMLR, New York, New York, USA.
4. ARORA, S., GE, R. and MOITRA, A. (2012). Learning topic models—going beyond SVD. In 2012 IEEE 53rd Annual Symposium on Foundations of Computer Science—FOCS 2012 1–10. IEEE Computer Soc., Los Alamitos, CA.
5. BANSAL, T., BHATTACHARYYA, C. and KANNAN, R. (2014). A provable SVD-based algorithm for learning topics in dominant admixture corpus. Adv. Neural Inf. Process. Syst. 27.