Fatigue Performance of Bearing Rollers Manufactured by Laser Powder Bed Fusion

Author:

Sotelo Luz D.12,Fuller Allen J.3,Pratt Cody S.1,Madireddy Guru14,Karunakaran Rakeshkumar12,Sealy Michael P.12,Liebe Timothy M.3,Turner Joseph A.1

Affiliation:

1. Mechanical and Materials Engineering, University of Nebraska-Lincoln 1 , Lincoln, NE, US

2. School of Mechanical Engineering, Purdue University 2 , West Lafayette, IN, 47907US

3. Amsted Rail Brenco 3 , 2580 Frontage Rd., Petersburg Industrial Park, Petersburg, VA23805, US

4. Sentient Science 4 , 1 Seneca Street, STE 2959, Buffalo, NY, US

Abstract

Metal additive manufacturing (AM) promises functional flexibility in the production of engineering components, and great progress has been made with respect to part geometry and overall performance criteria. The fracture and fatigue behaviors of metals depend on the sample microstructure, an aspect of metal AM for which many challenges remain. Here, we report on progress with respect to the rolling contact fatigue (RCF) performance of metal AM bearing rollers. A set of rollers was created using laser powder bed fusion from 8620HC steel powder. The print parameters were first studied with respect to laser power, laser scan speed, laser spot size, and layer thickness. A set of tapered cylindrical rollers was then manufactured using build parameters that were selected based on material density, optical microscopy, ultrasound, and residual stress measurements. The rollers were then heat-treated while still on the build plate to relieve any residual stresses. The rollers were removed from the build plate, machined to the typical product geometry, case-hardened, carburized, and ground to a final surface finish. Finally, the rollers were integrated within railroad tapered roller bearings and tested in two ways. The accelerated life test subjected the rollers to high-stress RCF that generated significant spalling on both types of rollers. The simulated service life test was designed with RCF at levels typical of in-service bearings. At the conclusion of this test, equivalent to 250,000 miles, the performance of the AM rollers was judged to be in line with rollers manufactured using traditional methods, and visual inspections showed no surface damage to any rollers. The results of this study provide a clear foundation for additional AM roller designs that can exploit the unique capabilities of the AM process.

Publisher

ASTM International100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3