Bottom-up effects on arthropod communities in Platycyamus regnellii (Fabaceae) fertilized with dehydrated sewage sludge

Author:

Fernandes de Souza GezileneORCID,Leite Germano Leão DemolinORCID,Silva Farley William SouzaORCID,Sampaio Regynaldo ArrudaORCID,Silva Júlia LetíciaORCID,Texeira Gustavo LealORCID,Soares Marcus AlvarengaORCID,Zanuncio José ColaORCID

Abstract

Sewage sludge is a nitrogen-rich organic compound, which can be used to aid development in plants such as Platycyamus regnellii (Fabaceae), in the recovery of degraded areas. This study aimed to assess the bottom-up effects on leaf mass and percentage ofground cover (leaf litter, herbaceous plants, and grasses) in P. regnellii trees fertilized (or not) with dehydrated sewage sludge and arthropod communities over 24 months. Platycyamus regnellii trees fertilized with dehydrated sewage sludge presented significantly more leavesper branch, branches per tree, and a higher percentage of ground cover compared to unfertilized trees. Phenacoccus sp. (Pseudococcidae) was the most abundant phytophagous insect associated with P. regnellii trees. Fertilization did not affect the abundance, diversity, and species richness of Hemiptera phytophagous on P. regnellii trees. However, fertilizedtrees presented higher abundance and species richness of trophobiont-tending ants compared to unfertilized trees, with Camponotus sp. being the most abundant regardless of the treatment. Fertilized P. regnellii trees also presented higher species richness of natural enemies compared to unfertilized ones, with Aranae and Dolichopodidae being the most abundant. We concluded that fertilization with dehydrated sewage sludge improved P. regnellii trees leafmass and ground cover and increased the diversity of trophobiont-tending ants and natural enemies. To our knowledge, this is the first study on the arthropods community associated withthis tree species. This suggests that upon fertilization, P. renellii trees are useful for ecological restoration in severely disturbed areas.

Publisher

Universidad del Valle

Subject

Insect Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3