Modeling the initial development dynamics for two native Brazilian forest tree species

Author:

Fagundes Flávia Fernanda Azevedo1,Martins Fabrina Bolzan1ORCID,Reis Fernando Yuri da Silva1,da Costa Haroldo Felipe1

Affiliation:

1. Natural Resources Institute, Federal University of Itajubá , Minas Gerais, C.P. 50, Itajubá 37500-903 , Brazil

Abstract

Abstract Development models are used to quantify the dynamics and rate of initial development, the seedling phase duration, and global warming impacts on forest species. Such models relate the physiological age of the plant, through air temperature functions, to its morphological appearance, given by the cumulative leaf number on the main stem. Despite their potential, studies on initial development dynamics are still scarce, especially for native forest species. Thus, this study calibrated and evaluated the performance of two development models—Phyllochron and Wang and Engel—in estimating the cumulative leaf number and seedling phase duration of two Brazilian native forest species—Cybistax antisyphilitica (Mart.) Mart. (Bignoniaceae) and Platycyamus regnellii Benth. (Fabaceae). Cumulative leaf number and seedling phase duration data from outdoor experiments carried out during the 2017 and 2018 growing seasons with 12 sowing dates in Itajubá, Minas Gerais, Brazil, were used. These experiments provided a rich dataset for calibrating and evaluating the Phyllochron and Wang and Engel development models. Both development models were capable of predicting cumulative leaf number with low and acceptable errors for both species and produced less accurate estimates for seedling phase duration. For C. antisyphilitica, both models were remarkably similar in estimating cumulative leaf number and seedling phase duration, with a root-mean-square error of 3.3 leaves and 25 days, respectively. For P. regnellii, the Wang and Engel model was slightly better than the Phyllochron, with an error of fewer than 2.06 leaves and 13.1 days. Using the coefficients calibrated in this study and, preferably, the Wang and Engel model, it is possible to project the development of both forest species under climate change scenarios.

Funder

Minas Gerais Research Support Foundation

Improvement of Higher Education Personnel

National Council for Scientific and Technological Development

Publisher

Oxford University Press (OUP)

Subject

Forestry

Reference79 articles.

1. Transpiration and growth responses by eucalyptus species to progressive soil drying;Abreu;J For Res,2022

2. Balanço hídrico climatológico para Itajubá-MG: cenário atual e projeções climáticas;Alves;Rev Bras Climatol,2020

3. Calibration and validation of a node appearance model in soybean crop;Bexaira;Rev Bras Eng Agric Ambient,2021

4. Correlations between growth variables and the Dickson quality index in forest seedlings;Binotto;Cerne,2010

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3