Modelo SIR de la pandemia de Covid-19 en Colombia

Author:

Manrique-Abril Fred G.ORCID,Agudelo-Calderon Carlos A.ORCID,González-Chordá Víctor M.ORCID,Gutiérrez-Lesmes OscarORCID,Téllez-Piñerez Cristian F.ORCID,Herrera-Amaya GiomarORCID

Abstract

Objetivo Desarrollar un modelo SIR pronóstico de la pandemia de COVID-19 en el territorio colombiano.Métodos Se utilizó un modelo SIR con enfoque determinístico para pronosticar el desarrollo de la pandemia de COVID-19 en Colombia. Los estados considerados fueron susceptibles (S), infecciosos (i) y recuperados o fallecidos (R). Los datos poblacionales se obtuvieron del Departamento Administrativo Nacional de estadística Proyecciones de Población 2018-2020, difundida en enero de 2020) y los datos sobre casos diarios confirmados de COVID-19 del Instituto Nacional de Salud. Se plantearon diferentes modelos variando el número básico de reproducción (R0).Resultados A partir de los casos reportados por el Ministerio de Salud se crearon cuatro ambientes o escenarios simulados en un modelo SIR epidemiológico, se extendieron las series de tiempo hasta el 30 de mayo, fecha probable del 99% de infección poblacional. Un R0 de 2 es la aproximación más cercana al comportamiento de la pandemia durante los primeros 15 días desde el reporte del caso 0, el peor escenario se daría en la primera semana de abril con un R0 igual a 3.Conclusiones Se hacen necesarias nuevas medidas de mitigación y supresión en las fases de contención y transmisión sostenida, como aumento de la capacidad diagnostica por pruebas y desinfección de zonas pobladas y hogares de aislamiento.

Publisher

Universidad Nacional de Colombia

Subject

Public Health, Environmental and Occupational Health

Reference31 articles.

1. Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus-Infected neumonia. N Engl J Med. [Internet] 2020; Citado 25 de marzo de 2020; 382:1199-1207. Disponible en: https://bit.ly/39spYE3.

2. Lu R, Zhao X, Li J, et al. Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet [Internet]; 2020; Citado el 25 de marzo de 2020; 395:565-574. Disponible en: https://bit.ly/3bNqTAL.

3. Zhu N, Zhang D, Wang W, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med [Internet] 2020; Citado el 25 de marzo de 2020; 382:727-733. Disponible en: https://bit.ly/39uR9yc.

4. GUAN, Wei-jie, et al. Clinical characteristics of coronavirus disease 2019 in China. N Engl J Med. [Internet] 2020. Citado el 25 de marzo de 2020. Disponible en: https://bit.ly/2JpRuHI.

5. Wu, JT, Leung, K., Bushman, M. et al. Estimating clinical severity of COVID-19 from the transmission dynamics in Wuhan, China. Nat Med [Internet]. 2020. Citado el 25 de marzo de 2020. Disponible en: https://bit.ly/2R0lQoB.

Cited by 25 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Estimación de intervalos de confianza Bootstrap de proporciones de factores asociados a inhumaciones por causa de COVID-19;Revista de la Universidad del Zulia;2024-05-02

2. Statistical Mathematical Analysis of COVID-19 at World Level;International Journal of Physics Research and Applications;2024-04-05

3. Unpredictability of the SIR equation, for the modeling of the Covid-19 pandemic: A case study of Ecuador;AIP Conference Proceedings;2024

4. Management Models;Advances in Logistics, Operations, and Management Science;2023-12-01

5. Prevalence of Anti-SARS-CoV-2 Antibodies and Associated Factors Among Health Care Workers in Santiago De Cali, Colombia;International Journal of General Medicine;2023-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3