Fast estimation of earthquake arrival azimuth using a single seismological station and machine learning techniques

Author:

Ochoa Gutierrez Luis Hernán,Vargas Jiménez Carlos Alberto,Niño Vásquez Luis Fernando

Abstract

The objective of this research is to apply a new approach to estimate arrival azimuth of seismic events using seismological records of the “El Rosal” station, near to the city of Bogota – Colombia, by applying support vector machines (SVMs). The algorithm was trained with time signal descriptors of 863 seismic events acquired from January 1998 to October 2008; considering only events with magnitude ≥ 2 ML.  The earthquake signals were filtered in order to remove diverse kind of low and high frequency noise not related to such events. During training stages of SVMs, several combinations of kernel function exponent and complexity factor were applied to time signals of 5, 10 and 15 seconds along with earthquake magnitudes of 2.0, 2.5, 3.0 and 3.5 ML. The best classification of SVMs was obtained using time signals of 5 seconds and earthquake magnitudes greater than 3.0 ML with kernel exponent of 10 and complexity factor of 2, showing accuracy of 45.4 degrees. This research is an improvement of previous works related to earthquake arrival azimuth determination from data of one single seismic station employing machine learning techniques. 

Publisher

Universidad Nacional de Colombia

Subject

General Earth and Planetary Sciences

Reference24 articles.

1. Anant, K. S. & Dowla, F. U. (1997). Wavelet transform methods for phase identification in three-component seismograms. Bulletin of the Seismological Society of America, 87(6), 1598-1612. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.871.8399&rep=rep1&type=pdf

2. Bermúdez, M. L. & Rengifo, F. (2002). EL ROSAL: La Estación Sismológica del CTBTO en Colombia. Bogota, Primer Simposio Colombiano de Sismología, p. 8.

3. Eisermann, A. S., Ziv, A. & Wust-Bloch, G. H. (2015). Real-Time Back Azimuth for Earthquake Early Warning. Bulletin of the Seismological Society of America, 105(4), 2274-2285. https://doi.org/10.1785/0120140298

4. Espinosa, J. M. (1995). Mexico City seismic alert system. Seismological Research Letters, 66(6), 42-53. https://doi.org/10.1785/gssrl.66.6.42

5. Frank, E., Hall, M. & Witten, I. (2016). The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques". Morgan Kaufmann, Fourth Edition, pp. 218-223.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3